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BACKGROUND 
In the DNA of cell nuclei, transcription factors (TF) bind regulatory regions throughout the genome in 
tissue specific patterns.  The binding occurs for three reasons: 1) the TF is present, 2) a section of DNA is 
in an open conformation (so-called euchromatin), and 3) the sequence contains a TF-specific cognate 
sequence.  To date, the most reliable method to assess if and where a TF is binding is to perform the 
chromatin immunoprecipitation (ChIP) assay.  Briefly, TFs are cross-linked to their bound DNA, and the 
protein-nucleic acid complex is isolated by a particular TF-specific antibody.  The DNA is then freed and 
sequenced (so-called ChIP-seq).  The sequences may be mapped back to loci in the genome.  In this way, 
the binding locations of one specific TF can be determined globally. 
 
The DNase hypersensitivity assay (DHS) presents a potential method of querying all locations of all TFs in 
a single assay.  Briefly, chromatin is treated with DNase I.  Euchromatin regions are cut, and these cuts 
are then sequenced.  Looking more closely at these spans of high cut regions, one sees short stretches 
notable for fewer cuts (viz. the footprint), which correspond to ~8-20 nucleotide (nt) sequences where 
TF binding protects the DNA from the DNase activity and usually harbor TF-specific cognate sequences.  
 
Figure 1. Cut profiles using lymphoblastoid cell line GM12878 for TF SRF.  The average cut number is plotted against 
nucleotide position with the motif in the middle.  The profile corresponding to bound TF is in black; not bound TF, red.  Note 
the divot or footprint in the middle of the bound TF profile. 

 
Concretely, the features are vectors X corresponding to sequence lengths several hundred nt long.  Each 
position can be a non-negative integer, representing the number of cuts produced by the DNase I 
hypersensitivity assay.  The target variable is whether a sequence harbors a bound TF (Y = 1) or not (Y = 
0).  An estimate of E[X|Y=1] (black) and E[X|Y=0] (red) is shown in Figure 1.  Simply, the work described 
herein applies machine learning models to distinguish regions resembling the black profile from the red.   
The training and test cases are created using ChIP-seq results for specific TFs as the gold standard.  The 
objective is to be able to recognize areas bound by TF with DHS results only, so the biologist may 
dispense with undertaking multiple ChIP-seqs .   
 
To date, there have been two major approaches to handling this problem.  Pritchard's group used what 
they termed a hierarchical mixture model1.  It is an unsupervised approach analogous to the mixtures of 
Gaussians computed with the EM algorithm in class.  The model distributions employed are different, 
however.  Instead of multinomial priors for the latent variable, the prior is modeled with a Bernoulli 
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distribution whose parameter is derived from a logistic regression using the features TF motif similarity 
score, distance to transcription start site, and sequence conservation.  The probability of the data given 
the latent variable is modeled by a negative binomial (for the number of cuts) multiplied by a 
multinomial (for the position of the cuts), instead of, as in the class example, Gaussian distributions.   
 
Boyle and colleagues took another approach2.  They used a hidden Markov model (HMM) to assess 
whether a region was likely to harbor a binding TF simply from the cut profile.  The advantages of this 
method was that it requires only DNase cut sites and did not rely on other information such as  TF motif 
similarity score, distance to transcription start site, and sequence conservation, which is extra 
information that must be inferred and is not without its own underlying uncertainty. 
 
Figure 2. Representative X(i)s.  Number of cuts is plotted against nucleotide position with the cognate TF sequence centered.  
The X(i) with Y(i)  = 1 is in black; the other with Y(i)  = 0, red. 

 
RESULTS 
At first blush, the DNase cut profiles between TF-bound and not TF-bound seem distinct enough, and 
one may presume the problem to be easily solved.  This unfortunately did not prove to be true.  We first 
employed linear support vector machine (SVM) model3 with rather poor results (precision 1.61%, recall 
31%).  L2-regularized linear logistic regression was no better (precision 1.11%, recall 12.5%).  Finally, we 
tried another SVM model using the radial basis function as kernal4, which was a better fit but still poor 

(precision 83%, recall 23%).  The data used were DHS 
results for human embryonic stem cell H1 with TF Atf3 
ChIP-seq data as the gold standard, all generated from the 
ENCODE Project (http://www.genome.gov/10005107). 
 
In the aforementioned computations, the error was 
unacceptably high in the context of using the training set as 
the test set.   This result implied a problem of bias.   We 
therefore sought to reformulate the features.  A careful 
look at the features of individual data points suggested this 
was the right path to take.  Although on average, the X(i)s 
between those with Y(i)  = 1  and Y(i)  = 0 are very different 
(Figure 1), on an individual case by case basis, the 
difference is not so easy to distinguish (Figure 2). 
 

One of the steps Pique-Regi and colleagues performed in 

Figure 3.  Average Cut Profile after Features 
Modified.  E[X|Y=1] for the forward strand is 
represented in black; E[X|Y=1] for the reverse 
strand, red; E[X|Y=0] for the forward strand, blue;  
E[X|Y=0] for the reverse strand, green. 
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processing their data was to distinguish between cuts of the forward strand from those of the reverse 1.  
Also, it seemed that using cuts approximately 500nt to the left and right of the cognate TF motif was 
excessive, since the peripheral positions seemed to harbor few cuts.  The range was reduced to 100nt to 
the left and right of the motif.  The subsequent SVM fit with the radial basis function as kernal was 
improved with a better recall (precision 79%, recall 31%).   
 
We next sought to understand the reason for the mistakes from this SVM model.  Figure 4 shows a plot 
of the average cut profiles of the true positives (TP), false positives (FP), false negatives (FN), and true 
negatives (TN).  In this representation, the values of the forward and reverse strands are placed end to 
end (i.e. the forward strand runs from positions 1 to 201; the reverse strand , 202 to 402).  As can be 
seen, the SVM model does separate out the different cut profiles well in the sense that the TP and FP as 

well as the FN and TN appear similar.  
This plot suggests that the there may be 
issues with the  training data, rather 
than with the model. 
 
Indeed, the gold standard may not be, in 
fact, perfect.  The presence of a bound 
TF was inferred probabilistically from 
ChIP-seq experiments.  Operationally, 
the TF peaks were called with QuEST5, 
which has a fairly stringent threshold.  
Heretofore, a region with a specific 
motif was considered not to harbor a TF 
if QuEST did not call a ChIP-seq peak in 
the region.  However, there could have 

been regions for which there was mild-moderate evidence for TF binding that QuEST discounted.  These 
same regions could have had very strong evidence for TF binding by the DHS assay.  Our method would 
leave these potentially mislabeled points in the training set. 
 
To address this issue, the training set was reconstituted with stricter criteria for designating a region not 
TF-bound.  Briefly, the area had to have had significantly more control sequences over TF sequences to 
be considered a negative data point (for more on how ChIP-seq is analyzed, please refer to Valouev et 
al.5).  After fitting the SVM model, we achieved precision of 100% and recall of 77%.  These numbers 
were calculated using 10-fold cross validation. 
 
A natural question is how these methods compare with the work of Pique-Regi et al.1 and Boyle et al.2.  
The latter framed their validation in a subtly more nuanced manner and will not be considered in this 
work.  The former used other information in addition the DHS cuts (viz. TF motif similarity score, 
distance to transcription start site, and sequence conservation), and moreover the group's data sets 
were not available to us. 
 
To directly compare our SVM model with the hierarchical mixture model of Pique-Regi et al. 1, we 
analyzed the DHS data of lymphoblastoid line GM12878 and the TF CTCF ChIP-seq data.  With the SVM 
model with the radial basis function kernal fitted by 10 fold cross validation, we achieved a precision of 
96% and recall of 89%.  This compares favorably with Pique-Regi and colleagues' reported results of 
98.47% and 87.56% for the same measures, respectively.  Of note, our results are no worse  even 

Figure 4.  Average Cut Profiles from SVM Fit.  Points are stratified as true 
positives (black), false positives (red), false negatives (green), and true 
negatives (blue). 
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though the latter used other biological information in making final calls.  The comparison must be 
viewed with a jaundiced eye, however, because we did not use precisely the same validation set as they 
did.  Even though we started with the same raw sequence files, the actual data points abstracted from 
these sources were different. 
 
To make an even more direct comparison, we ran  Pique-Regi et al.'s hierarchical model implemented in 
R6 package CENTIPEDE1 on our CTCF data.  We used only the GM12878 DHS cuts as input.  The model 
achieved a precision of 92% and recall of 77%.  The decrement in accuracy may be attributed to not 
using extra-DHS information, increased difficulty of our data set, and/or  the lesser discriminatory power 
of their hierarchical model vis-a-vis an SVM one. 
 
DISCUSSION 
We have shown that SVMs can be a powerful tool to distinguish between regions with TF binding and 
non-binding with the DHS assay.  Further work must be done to compare the method with others for 
many more transcription factors beyond CTCF.  Another avenue is to see if the same SVM fit can be used 
across multiple (or maybe all TFs).  The concept of Boyle et al.'s HMM sought to achieve this objective;  
Pique-Regi et al.'s model required a different model to be fit for every TF.   
 
This last point has important implications for how DHS data can be used to supplant an exhaustive set of 
ChIP-seq TF experiments to elucidate the cellular regulome.  The promise of DHS data was not only to 
define the positions of known TFs, but to allow identification of new ones, which would only be known 
by their sequence motifs.  Since the hierarchical model must be fit for every new TF, the identification of 
new TF positions is not as direct. 
 
It is by no means impossible.   Pique-Regi et al. were able to achieve this goal by looking for sequence 
motifs not previously described across DHS cut enriched areas.  Having identified common motifs, they 
fit their hierarchical model for each set of regions with a common, novel motif. 
 
This is in contradistinction to what Boyle et al.'s approach can possibly do (and what the SVM can 
potentially do better).  A single model may be run across the DHS cuts across the genome.  Regions 
marked highly probability of bound TF are marked.  The search for common motifs can then be 
relegated to a much smaller search space.  The material difference of these two approaches is that this 
latter method can identify motifs of low abundance across the genome.   Further work will be required 
to realize this goal. 
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